Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Biol Macromol ; 200: 438-448, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1633972

ABSTRACT

As SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) continues to inflict chaos globally, a new variant officially known as B.1.1.529 was reported in South Africa and was found to harbor 30 mutations in the spike protein. It is too early to speculate on transmission and hospitalizations. Hence, more analyses are required, particularly to connect the genomic patterns to the phenotypic attributes to reveal the binding differences and antibody response for this variant, which can then be used for therapeutic interventions. Given the urgency of the required analysis and data on the B.1.1.529 variant, we have performed a detailed investigation to provide an understanding of the impact of these novel mutations on the structure, function, and binding of RBD to hACE2 and mAb to the NTD of the spike protein. The differences in the binding pattern between the wild type and B.1.1.529 variant complexes revealed that the key substitutions Asn417, Ser446, Arg493, and Arg498 in the B.1.1.529 RBD caused additional interactions with hACE2 and the loss of key residues in the B.1.1.529 NTD resulted in decreased interactions with three CDR regions (1-3) in the mAb. Further investigation revealed that B.1.1.529 displayed a stable dynamic that follows a global stability trend. In addition, the dissociation constant (KD), hydrogen bonding analysis, and binding free energy calculations further validated the findings. Hydrogen bonding analysis demonstrated that significant hydrogen bonding reprogramming took place, which revealed key differences in the binding. The total binding free energy using MM/GBSA and MM/PBSA further validated the docking results and demonstrated significant variations in the binding. This study is the first to provide a basis for the higher infectivity of the new SARS-CoV-2 variants and provides a strong impetus for the development of novel drugs against them.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies/chemistry , Antibodies/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Humans , Hydrogen Bonding , Immune Evasion , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
2.
Sci Rep ; 12(1): 692, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1621265

ABSTRACT

The receptor binding domain (RBD) of the Spike protein from SARS-CoV-2 is a promising candidate to develop effective COVID-19 vaccines since it can induce potent neutralizing antibodies. We have previously reported the highly efficient production of RBD in Pichia pastoris, which is structurally similar to the same protein produced in mammalian HEK-293T cells. In this work we designed an RBD multimer with the purpose of increasing its immunogenicity. We produced multimeric particles by a transpeptidation reaction between RBD expressed in P. pastoris and Lumazine Synthase from Brucella abortus (BLS), which is a highly immunogenic and very stable decameric 170 kDa protein. Such particles were used to vaccinate mice with two doses 30 days apart. When the particles ratio of RBD to BLS units was high (6-7 RBD molecules per BLS decamer in average), the humoral immune response was significantly higher than that elicited by RBD alone or by RBD-BLS particles with a lower RBD to BLS ratio (1-2 RBD molecules per BLS decamer). Remarkably, multimeric particles with a high number of RBD copies elicited a high titer of neutralizing IgGs. These results indicate that multimeric particles composed of RBD covalent coupled to BLS possess an advantageous architecture for antigen presentation to the immune system, and therefore enhancing RBD immunogenicity. Thus, multimeric RBD-BLS particles are promising candidates for a protein-based vaccine.


Subject(s)
COVID-19/immunology , Immunity, Humoral/immunology , Protein Binding/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19 Vaccines/immunology , Cell Line , Female , HEK293 Cells , Humans , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C
3.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1578079

ABSTRACT

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Subject(s)
Mammals/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , Cell Line , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , Humans , Mammals/immunology , Protein Binding/genetics , Protein Binding/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
Clin Immunol ; 234: 108918, 2022 01.
Article in English | MEDLINE | ID: covidwho-1588088

ABSTRACT

The Spike-Receptor Binding Domain (S-RBD) is considered the most antigenic protein in SARS-CoV-2 and probably the key player in SARS-CoV-2 immune response. Quantitative immunoassays may help establish an anti-RBD Abs threshold as an indication of protective immunity. Since different immunoassays are commercial, the standard reference method for the neutralizing activity is the live Virus Neutralization Test (VNT). In this study, anti-RBD IgG levels were detected with two chemiluminescent immunoassays in paucisymptomatic, symptomatic and vaccinated subjects, and their neutralizing activity was correlated to VNT titer, using SARS-CoV-2 original and British variant strains. Both immunoassays confirmed higher anti-RBD Abs levels in vaccinated subjects. Furthermore, despite different anti-RBD Abs median concentrations between the immunoassays, a strong positive correlation with VNT was observed. In conclusion, although the SARS-CoV-2 immune response heterogeneity, the use of immunoassays can help in large-scale monitoring of COVID-19 samples, becoming a valid alternative to VNT test for diagnostic routine laboratories.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Serological Testing/methods , COVID-19/immunology , Immunoassay/methods , Neutralization Tests/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Female , Humans , Male , Middle Aged , Protein Binding/immunology , Vero Cells , Young Adult
5.
Front Immunol ; 12: 793953, 2021.
Article in English | MEDLINE | ID: covidwho-1572289

ABSTRACT

Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Binding Sites, Antibody/immunology , COVID-19/virology , Cohort Studies , Cross Reactions/immunology , Female , Humans , Male , Middle Aged , Neutralization Tests/methods , Nucleocapsid/immunology , Nucleocapsid/metabolism , Protein Binding/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
6.
Microbiol Spectr ; 9(3): e0056021, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1546467

ABSTRACT

Serological tests are beneficial for recognizing the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To identify protective immunity, optimization of the chemiluminescent reduction neutralizing test (CRNT) is critical. Whether commercial antibody tests have comparable accuracy is unknown. Serum samples were obtained from COVID-19 patients (n = 74), SARS-CoV-2 PCR-negative (n = 179), and suspected healthy individuals (n = 229) before SARS-CoV-2 variants had been detected locally. The convalescent phase was defined as the period after day 10 from disease onset or the episode of close contact. The CRNT using pseudotyped viruses displaying the wild-type (WT) spike protein and a commercial anti-receptor-binding domain (RBD) antibody test were assayed. Serology for the B.1.1.7 and B.1.351 variants was also assayed. Both tests concurred for symptomatic COVID-19 patients in the convalescent phase. They clearly differentiated between patients and suspected healthy individuals (sensitivity: 95.8% and 100%, respectively; specificity: 99.1% and 100%, respectively). Anti-RBD antibody test results correlated with neutralizing titers (r = 0.31, 95% confidence interval [CI] 0.22-0.38). Compared with the WT, lower CRNT values were observed for the variants. Of the samples with ≥100 U/mL by the anti-RBD antibody test, 77.8% and 88.9% showed ≥50% neutralization against the B.1.1.7 and the B.1.351 variants, respectively. Exceeding 100 U/mL in the anti-RBD antibody test was associated with neutralization of variants (P < 0.01). The CRNT and commercial anti-RBD antibody test effectively classified convalescent COVID-19 patients. Strong positive results with the anti-RBD antibody test can reflect neutralizing activity against emerging variants. IMPORTANCE This study provides a diagnostic evidence of test validity, which can lead to vaccine efficacy and proof of recovery after COVID-19. It is not easy to know neutralization against SARS-CoV-2 in the clinical laboratory because of technical and biohazard issues. The correlation of the quantitative anti-receptor-binding domain antibody test, which is widely available, with neutralizing test indicates that we can know indirectly the state of acquisition of functional immunity against wild and variant-type viruses in the clinical laboratory.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/immunology , Neutralization Tests/methods , Protein Binding/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/classification , Vaccine Efficacy , Viral Pseudotyping , Young Adult
7.
Cell Host Microbe ; 30(1): 53-68.e12, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1536483

ABSTRACT

Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1, and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta-infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor-binding domain (RBD). Two of these RBD-binding mAbs recognize a neutralizing epitope conserved between SARS-CoV-1 and -2, while 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y, including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cells, Cultured , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Neutralization Tests/methods , Protein Binding/immunology , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
9.
Viruses ; 13(10)2021 09 26.
Article in English | MEDLINE | ID: covidwho-1438749

ABSTRACT

The novel coronavirus pneumonia (COVID-19) pandemic is a great threat to human society and now is still spreading. Although several vaccines have been authorized for emergency use, only one recombinant subunit vaccine has been permitted for widespread use. More subunit vaccines for COVID-19 should be developed in the future. The receptor binding domain (RBD), located at the S protein of SARS-CoV-2, contains most of the neutralizing epitopes. However, the immunogenicity of RBD monomers is not strong enough. In this study, we fused the RBD-monomer with a modified Fc fragment of human IgG1 to form an RBD-Fc fusion protein. The recombinant vaccine candidate based on the RBD-Fc protein could induce high levels of IgG and neutralizing antibody in mice, and these could last for at least three months. The secretion of IFN-γ, IL-2 and IL-10 in the RBD-stimulated splenocytes of immunized mice also increased significantly. Our results first showed that the RBD-Fc vaccine could induce both humoral and cellular immune responses and might be an optional strategy to control COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitopes/immunology , Female , Humans , Immunoglobulin Fc Fragments/immunology , Mice , Mice, Inbred BALB C , Protein Binding/immunology , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Viral Vaccines/immunology
10.
Viruses ; 13(10)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1438738

ABSTRACT

Antibodies targeting the spike (S) and nucleocapsid (N) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential tools. In addition to important roles in the treatment and diagnosis of infection, the availability of high-quality specific antibodies for the S and N proteins is essential to facilitate basic research of virus replication and in the characterization of mutations responsible for variants of concern. We have developed panels of mouse and rabbit monoclonal antibodies (mAbs) to the SARS-CoV-2 spike receptor-binding domain (S-RBD) and N protein for functional and antigenic analyses. The mAbs to the S-RBD were tested for neutralization of native SARS-CoV-2, with several exhibiting neutralizing activity. The panels of mAbs to the N protein were assessed for cross-reactivity with the SARS-CoV and Middle East respiratory syndrome (MERS)-CoV N proteins and could be subdivided into sets that showed unique specificity for SARS-CoV-2 N protein, cross-reactivity between SARS-CoV-2 and SARS-CoV N proteins only, or cross-reactivity to all three coronavirus N proteins tested. Partial mapping of N-reactive mAbs were conducted using truncated fragments of the SARS-CoV-2 N protein and revealed near complete coverage of the N protein. Collectively, these sets of mouse and rabbit monoclonal antibodies can be used to examine structure/function studies for N proteins and to define the surface location of virus neutralizing epitopes on the RBD of the S protein.


Subject(s)
Betacoronavirus/immunology , Coronavirus Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cross Reactions , Epitopes/metabolism , Humans , Mice , Neutralization Tests , Phosphoproteins/immunology , Phosphoproteins/metabolism , Protein Binding/immunology , Rabbits , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
11.
Cell Rep ; 37(2): 109814, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1433045

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Subject(s)
Broadly Neutralizing Antibodies/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Cell Line , Cricetinae , Disease Models, Animal , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Neutralization Tests , Protein Binding/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Structure-Activity Relationship , Vaccination
12.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374427

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent of the COVID19 pandemic. The SARS-CoV-2 genome encodes for a small accessory protein termed Orf9b, which targets the mitochondrial outer membrane protein TOM70 in infected cells. TOM70 is involved in a signaling cascade that ultimately leads to the induction of type I interferons (IFN-I). This cascade depends on the recruitment of Hsp90-bound proteins to the N-terminal domain of TOM70. Binding of Orf9b to TOM70 decreases the expression of IFN-I; however, the underlying mechanism remains elusive. We show that the binding of Orf9b to TOM70 inhibits the recruitment of Hsp90 and chaperone-associated proteins. We characterized the binding site of Orf9b within the C-terminal domain of TOM70 and found that a serine in position 53 of Orf9b and a glutamate in position 477 of TOM70 are crucial for the association of both proteins. A phosphomimetic variant Orf9bS53E showed drastically reduced binding to TOM70 and did not inhibit Hsp90 recruitment, suggesting that Orf9b-TOM70 complex formation is regulated by phosphorylation. Eventually, we identified the N-terminal TPR domain of TOM70 as a second binding site for Orf9b, which indicates a so far unobserved contribution of chaperones in the mitochondrial targeting of the viral protein.


Subject(s)
COVID-19/transmission , Coronavirus Nucleocapsid Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , SARS-CoV-2/pathogenicity , Animals , Binding Sites/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/isolation & purification , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/isolation & purification , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Protein Binding/genetics , Protein Binding/immunology , Protein Domains/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
13.
mSphere ; 6(4): e0048021, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1371851

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), harboring spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) mutations, exhibit reduced in vitro susceptibility to convalescent-phase serum, commercial antibody cocktails, and vaccine neutralization and have been associated with reinfections. The accumulation of these mutations could be the consequence of intrahost viral evolution due to prolonged infection in immunocompromised hosts. In this study, we document the microevolution of SARS-CoV-2 recovered from sequential tracheal aspirates from an immunosuppressed patient on steroids and convalescent plasma therapy and identify the emergence of multiple NTD and RBD mutations. SARS-CoV-2 genomes from the first swab (day 0) and from three tracheal aspirates (days 7, 21, and 27) were compared at the sequence level. We identified a mixed viral population with five different S protein mutations (141 to 144 deletion, 243 to 244 deletion, E484K, Q493K, and Q493R) at the NTD or RBD region from the second tracheal aspirate sample (day 21) and a predominance of the S protein 141 to 144 LGVY deletion and E484K mutant on day 27. The neutralizing antibodies against various S protein lentiviral pseudovirus mutants, as well as the anti-SARS-CoV-2 total Ig and IgG, showed "U" shape dynamics, in support of the endogenous development of neutralizing antibodies. The patient's compromised immune status, the antirejection regiment, convalescent plasma treatment, and the development of neutralizing antibodies may have resulted in unique selective pressures on the intrahost genomic evolution, and this observation supports the hypotheses that VOCs can independently arise and that immunocompromised patients on convalescent plasma therapy are potential breeding grounds for immune escape mutants. IMPORTANCE Over a year of the COVID-19 pandemic, distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages have arisen in multiple geographic areas around the world. SARS-CoV-2 variants of concern (VOCs), i.e., B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), and B.1.617.2 (delta), harboring mutations and/or deletions in spike protein N-terminal domain (NTD) or receptor-binding domain (RBD) regions showed evidence of increased transmissibility and disease severity and possible reduced vaccine efficacy. In this study, we report the emergence of five different NTD and RBD mutations in an uncommon SARS-CoV-2 B.1.369 lineage from an immunosuppressed patient undergoing steroid and convalescent plasma therapy. The observation highlighted that VOCs can independently arise in immunocompromised populations undergoing anti-SARS-CoV-2 therapy, and enhanced measures will be required to reduce the transmission.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , Immunocompromised Host/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Humans , Immunization, Passive , Male , Middle Aged , Mutation/immunology , Neutralization Tests/methods , Pandemics/prevention & control , Protein Binding/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
14.
Mol Cell ; 81(17): 3650-3658.e5, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1356368

ABSTRACT

CRISPR-inspired systems have been extensively developed for applications in genome editing and nucleic acid detection. Here, we introduce a CRISPR-based peptide display technology to facilitate customized, high-throughput in vitro protein interaction studies. We show that bespoke peptide libraries fused to catalytically inactive Cas9 (dCas9) and barcoded with unique single guide RNA (sgRNA) molecules self-assemble from a single mixed pool to programmable positions on a DNA microarray surface for rapid, multiplexed binding assays. We develop dCas9-displayed saturation mutagenesis libraries to characterize antibody-epitope binding for a commercial anti-FLAG monoclonal antibody and human serum antibodies. We also show that our platform can be used for viral epitope mapping and exhibits promise as a multiplexed diagnostics tool. Our CRISPR-based peptide display platform and the principles of complex library self-assembly using dCas9 could be adapted for rapid interrogation of varied customized protein libraries or biological materials assembly using DNA scaffolding.


Subject(s)
Epitopes/genetics , Gene Editing/methods , Peptide Library , RNA, Guide, Kinetoplastida/genetics , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Epitopes/immunology , Humans , Mutagenesis/genetics , Protein Binding/genetics , Protein Binding/immunology , RNA, Guide, Kinetoplastida/immunology
15.
mSphere ; 6(4): e0064721, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1352536

ABSTRACT

Basigin, or CD147, has been reported as a coreceptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to invade host cells. Basigin also has a well-established role in Plasmodium falciparum malaria infection of human erythrocytes, where it is bound by one of the parasite's invasion ligands, reticulocyte binding protein homolog 5 (RH5). Here, we sought to validate the claim that the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein can form a complex with basigin, using RH5-basigin as a positive control. Using recombinantly expressed proteins, size exclusion chromatography and surface plasmon resonance, we show that neither RBD nor full-length spike glycoprotein bind to recombinant human basigin (expressed in either Escherichia coli or mammalian cells). Further, polyclonal anti-basigin IgG did not block SARS-CoV-2 infection of Vero E6 cells. Given the immense interest in SARS-CoV-2 therapeutic targets to improve treatment options for those who become seriously ill with coronavirus disease 2019 (COVID-19), we would caution the inclusion of basigin in this list on the basis of its reported direct interaction with SARS-CoV-2 spike glycoprotein. IMPORTANCE Reducing the mortality and morbidity associated with COVID-19 remains a global health priority. Vaccines have proven highly effective at preventing infection and hospitalization, but efforts must continue to improve treatment options for those who still become seriously ill. Critical to these efforts is the identification of host factors that are essential to viral entry and replication. Basigin, or CD147, was previously identified as a possible therapeutic target based on the observation that it may act as a coreceptor for SARS-CoV-2, binding to the receptor binding domain of the spike protein. Here, we show that there is no direct interaction between the RBD and basigin, casting doubt on its role as a coreceptor and plausibility as a therapeutic target.


Subject(s)
Basigin/metabolism , COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Basigin/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Host-Pathogen Interactions/immunology , Humans , Protein Binding/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Virus Internalization
16.
Cell Res ; 31(9): 1011-1023, 2021 09.
Article in English | MEDLINE | ID: covidwho-1315592

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global crisis, urgently necessitating the development of safe, efficacious, convenient-to-store, and low-cost vaccine options. A major challenge is that the receptor-binding domain (RBD)-only vaccine fails to trigger long-lasting protective immunity if used alone for vaccination. To enhance antigen processing and cross-presentation in draining lymph nodes (DLNs), we developed an interferon (IFN)-armed RBD dimerized by an immunoglobulin fragment (I-R-F). I-R-F efficiently directs immunity against RBD to DLNs. A low dose of I-R-F induces not only high titers of long-lasting neutralizing antibodies (NAbs) but also more comprehensive T cell responses than RBD. Notably, I-R-F provides comprehensive protection in the form of a one-dose vaccine without an adjuvant. Our study shows that the pan-epitope modified human I-R-F (I-P-R-F) vaccine provides rapid and complete protection throughout the upper and lower respiratory tracts against a high-dose SARS-CoV-2 challenge in rhesus macaques. Based on these promising results, we have initiated a randomized, placebo-controlled, phase I/II trial of the human I-P-R-F vaccine (V-01) in 180 healthy adults, and the vaccine appears safe and elicits strong antiviral immune responses. Due to its potency and safety, this engineered vaccine may become a next-generation vaccine candidate in the global effort to overcome COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Immunogenicity, Vaccine/immunology , Protein Binding/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/immunology , Cell Line , Chlorocebus aethiops , Double-Blind Method , Female , HEK293 Cells , Humans , Interferons/immunology , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged , Vaccination/methods , Vero Cells , Young Adult
17.
J Mol Biol ; 433(18): 167155, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1309295

ABSTRACT

The ongoing massive vaccination and the development of effective intervention offer the long-awaited hope to end the global rage of the COVID-19 pandemic. However, the rapidly growing SARS-CoV-2 variants might compromise existing vaccines and monoclonal antibody (mAb) therapies. Although there are valuable experimental studies about the potential threats from emerging variants, the results are limited to a handful of mutations and Eli Lilly and Regeneron mAbs. The potential threats from frequently occurring mutations on the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD) to many mAbs in clinical trials are largely unknown. We fill the gap by developing a topology-based deep learning strategy that is validated with tens of thousands of experimental data points. We analyze 796,759 genome isolates from patients to identify 606 non-degenerate RBD mutations and investigate their impacts on 16 mAbs in clinical trials. Our findings, which are highly consistent with existing experimental results about Alpha, Beta, Gamma, Delta, Epsilon, and Kappa variants shed light on potential threats of 100 most observed mutations to mAbs not only from Eli Lilly and Regeneron but also from Celltrion and Rockefeller University that are in clinical trials. We unveil, for the first time, that high-frequency mutations R346K/S, N439K, G446V, L455F, V483F/A, F486L, F490L/S, Q493L, and S494P might compromise some of mAbs in clinical trials. Our study gives rise to a general perspective about how mutations will affect current vaccines.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19 Drug Treatment , Mutation/drug effects , SARS-CoV-2/drug effects , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , Humans , Mutation/immunology , Pandemics/prevention & control , Protein Binding/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
18.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1294694

ABSTRACT

With the onset of the COVID-19 pandemic, the amount of data on genomic and proteomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stored in various databases has exponentially grown. A large volume of these data has led to the production of equally immense sets of immunological data, which require rigorous computational approaches to sort through and make sense of. Immunoinformatics has emerged in the recent decades as a field capable of offering this approach by bridging experimental and theoretical immunology with state-of-the-art computational tools. Here, we discuss how immunoinformatics can assist in the development of high-performance vaccines and drug discovery needed to curb the spread of SARS-CoV-2. Immunoinformatics can provide a set of computational tools to extract meaningful connections from the large sets of COVID-19 patient data, which can be implemented in the design of effective vaccines. With this in mind, we represent a pipeline to identify the role of immunoinformatics in COVID-19 treatment and vaccine development. In this process, a number of free databases of protein sequences, structures and mutations are introduced, along with docking web servers for assessing the interaction between antibodies and the SARS-CoV-2 spike protein segments as most commonly considered antigens in vaccine design.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Computational Biology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Molecular Docking Simulation , Protein Binding/genetics , Protein Binding/immunology , Proteomics , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
19.
Cell Rep ; 36(2): 109353, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1275191

ABSTRACT

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier and caused widespread disease in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterize 198 antibodies isolated from four COVID-19+ subjects and identify 14 SARS-CoV-2 neutralizing antibodies. One targets the N-terminal domain (NTD), one recognizes an epitope in S2, and 11 bind the receptor-binding domain (RBD). Three anti-RBD neutralizing antibodies cross-neutralize SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency and antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. All four cross-neutralizing antibodies neutralize the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Binding Sites , Cell Line , Cross Reactions , Epitopes/immunology , Female , HEK293 Cells , Humans , Mice , Neutralization Tests , Protein Binding/immunology , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry
20.
Eur J Immunol ; 51(9): 2296-2305, 2021 09.
Article in English | MEDLINE | ID: covidwho-1258058

ABSTRACT

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the results of SARS-CoV-2 RBD, the serological response of SARS-CoV-2 NTD is less cross-reactive with SARS-CoV, a pandemic strain that was identified in 2003. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers a supplementary strategy for serology testing, it may not be suitable as an immunogen for vaccine development.


Subject(s)
COVID-19/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Cross Reactions/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Pandemics/prevention & control , Protein Binding/immunology , Sf9 Cells , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL